*-frames for operators on Hilbert modules
Authors
Abstract:
$K$-frames which are generalization of frames on Hilbert spaces, were introduced to study atomic systems with respect to a bounded linear operator. In this paper, $*$-$K$-frames on Hilbert $C^*$-modules, as a generalization of $K$-frames, are introduced and some of their properties are obtained. Then some relations between $*$-$K$-frames and $*$-atomic systems with respect to an adjointable operator are considered and some characterizations of $*$-$K$-frames are given. Finally perturbations of $*$-$K$-frames are discussed.
similar resources
extend numerical radius for adjointable operators on Hilbert C^* -modules
In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.
full text$G$-Frames for operators in Hilbert spaces
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
full textFrames in super Hilbert modules
In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
full textFrames for Hilbert C*-modules
There is growing evidence that Hilbert C*-module theory and the theory of wavelets and Gabor (i.e. Weyl-Heisenberg) frames are tightly related to each other in many aspects. Both the research fields can benefit from achievements of the other field. The goal of the talk given at the mini-workshop was to give an introduction to the theory of module frames and to Hilbert C*modules showing key anal...
full textG-frames and their duals for Hilbert C*-modules
Abstract. Certain facts about frames and generalized frames (g- frames) are extended for the g-frames for Hilbert C*-modules. It is shown that g-frames for Hilbert C*-modules share several useful properties with those for Hilbert spaces. The paper also character- izes the operators which preserve the class of g-frames for Hilbert C*-modules. Moreover, a necessary and suffcient condition is ob- ...
full textG-frames and Hilbert-Schmidt operators
In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.
full textMy Resources
Journal title
volume 3 issue 1
pages 27- 43
publication date 2016-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023